

Ventilación sincronizada

Dr. S. Navarro-Psihas

Department of Neonatology

University clinic Innsbruck

Van Kaam: Journal of Pediatrics 2010

173 centros europeos con cuidados neonatales

Table IV. Ventilation modes and synchronization		
	Patients (n = 535)	
Conventional modes	457 (85%)	
Time cycled pressure limited	317 (69%)	
Pressure controlled	46 (10%)	
Volume controlled	7 (2%)	
Volume guarantee	43 (9%)	
Pressure support*	39 (9%)	
Others	5 (1%)	
High-frequency mode	78 (15%)	
Synchronization modes [†]		
Synchronized intermittent mandatory ventilation	274 (60%)	
Assist/Control ventilation	140 (31%)	
Pressure support ventilation [‡]	11 (3%)	
No synchronization	29 (6%)	

Van Kaam: Journal of Pediatrics 2010

173 centros europeos con cuidados neonatales

Table VI. Ventilatory measurements of included infants		
Conventional mechanical ventilation		
Peak inspiratory pressure (cmH ₂ 0)	18.6 ± 4.6	
Pressure support level (cmH ₂ 0)	13.8 ± 5.2	
Mean airway pressure (cmH ₂ 0)	7.9 ± 2.3	
Positive end-expiratory pressure (cmH ₂ 0)	4.5 ± 1.1	
Expiratory tidal volume (mL/kg)	5.7 ± 2.3	
No tidal volumes measured	73 (16%)	
Ventilatory rate (breaths/min)	41 \pm 14	
Inspiration time (sec)	0.38 ± 0.10	
Fraction inspired oxygen	0.28 (0.21-0.36)*	
Inspiratory flow (L/min)	8.1 \pm 2.7	
High-frequency ventilation		
Mean airway pressure (cmH ₂ 0)	12.4 \pm 3.2	
Frequency (hertz)	10 (10-12)*	
Inspiration time	33% (33%-40%)*	
Fraction inspired oxygen	0.38 (0.25-0.55)*	
Inspiratory flow (L/min)	15 ± 5	

Van Kaam: Journal of Pediatrics 2010

173 centros europeos con cuidados neonatales

Bases fisiológicas

Trabajo respiratorio

- Trabajo requerido para vencer las fuerzas elásticas y de resistencia que se oponen al flujo de gas en el sistema respiratorio
- Distensibilidad respiratoria
 - Distensibilidad pulmonar
 - Distensibilidad torácica
- Resistencia respiratoria
 - Resistencia fisiológica
 - Resistencia artificial

Determinantes del trabajo respiratorio

Distensibilidad pulmonar

- · Producción de surfactante
- · Contenido de agua

Resistencia de la vía aérea

- · Diámetro (cuarta potencia)
- Longitud
- Curvatura
- Viscosidad del gas
- Turbulencias del flujo

Normal state

Resp. insufficiency

Endotracheal intubation

Ventilatory support

Reduction in ventilatory support

Minimal ventilatory support

Ventilación sincronizada

Ventilación no sincronizada

- Altas presiones en la vía aérea
- Oxigenación pobre
- Fluctuaciones de la presión intracraneal
- † Relajantes musculares y sedativos
 - Debilidad muscular
 - Formación de edema
 - · Dependencia respiratoria

Author	Population	Benefit
Bernstein, 1994	30 newborns	Larger, more consistent VT with SIMV
Cleary, 1995	10 newborns (<32 wk gestation) <12 h	SIMV improved oxygenation
Jarreau, 1996	6 newborns who had RDS	PTV decreased work of breathing
Smith, 1997	17 newborns who had RDS	SIMV decreased respiratory rate
Quinn, 1998	59 newborns (<32 wk gestation)	PTV decreased catecholamine levels

VT=tidal volume, SIMV=synchronized intermittent mandatory ventilation, RDS=respiratory distress syndrome, PTV=patient-triggered ventilation.

Formas de desate de disparo

Por flujo

- Más sensible que el de presión
- · Medición del volumen corriente
- Adición de espacio muerto
- Auto-disparos en presencia de agua o de fuga por el tubo

Cápsula de superficie

- Muy sensible
- No agrega espacio muerto
- Sensible a los cambios de posición
- Disparos por artefactos

Modos de ventilación

IPPV

Número fijo de disparos no sincronizados en ausencia de respiración espontánea

IMV

Igual pero en presencia de respiración espontánea

SIMV

Número fijo de disparos sincronizados con la respiración espontánea del paciente

SIPPV or A/C

 Soporte de todas las inspiraciones del paciente. La frecuencia ventilatoria es relevante solo en presencia de apnea

IMV

SIMV

IMV

Assist/control SIPPV

Assist/control SIPPV

SIMV:

- Regulación de la ventilación mediante la frecuencia ventilatoria
- Destete: Reducción de la presión pico y de la frecuencia
- 1 Variación del volumen corriente y del trabajo respiratorio
- Ventilación muerta durante la respiración espontánea no soportada
- Incremento del volumen corriente para aumentar la ventilación minuto

Spontaneous and supported VT during SIMV

SIPPV o A/C

- Frecuencia solo relevante en presencia de apnea
- Destete solo con la presión (accionismo)
- Volumen corriente muy uniforme
- Riesgo de hiperventilación y atrapamiento de aire en el caso de auto-disparos

Ventajas de A/C sobre SIMV

- Volumen corriente más constante
- 1 taquipnea
- ‡ trabajo respiratorio
- ↓ Variación de la presión arterial
- Destete más rápido (2 de 3 RCT's)

Argumentos para sostener la aversión al cambio

"Durante SIPPV/AC no es posible destetar al paciente porque se soportan todas las inspiraciones del paciente"

"SIPPV/AC puede ser deleterio por el gran número de insuflaciones aplicadas al paciente"

Ventilación mecánica y daño pulmonar

- El daño pulmonar es principalmente debido a:
 - Sobredistensión alveolar († VT)
 - Reclutamiento a colapso alveolar repetitivo (atelectrauma)
- The OCTAVE study showed
 - Less air leak
 - Even with non-synchronized ventilation

"Insuflaciones con mayor presión son necesarias para evitar la formación de atelectasias"

Formación de atelectasias

- Volumen corriente alto puede dañar el pulmón
- El momento vulnerable para el colapso alveolar es la espiración y no la inspiración (PEEP y no PIP)
- ¡Las atelectasias son comúnmente causadas por secreciones en pacientes con esfuerzo respiratorio pobre y falta de reflejos!

Evidencia clínica

Pediatric Pulmonology 29:11-18 (2000)

Randomized Controlled Trial of Volume-Targeted Synchronized Ventilation and Conventional Intermittent Mandatory Ventilation Following Initial Exogenous Surfactant Therapy

Jeanne D. Mrozek, MD,¹ Ellen M. Bendel-Stenzel, MD,¹ Pat A. Meyers, RRT,¹ Dennis R. Bing, RRT,¹ John E. Connett, PhD,² and Mark C. Mammel, MD^{1*}

Respiratory rate (breaths/min), total/mechanical

	IMV	SIMV	A/C		
Baseline	76 ± 6	75 ± 4	63 ± 3		
	40 ± 0	40 ± 0	40 ± 0		
15 min	74 ± 5	77 ± 6	62 ± 3		
	40 ± 0	40 ± 0	40 ± 0		
30 min	80 ± 6	78 ± 6	64 ± 5		
	40 ± 0	40 ± 0	40 ± 0		
45 min	81 ± 4	79 ± 5	66 ± 5**		
	40 ± 0	40 ± 0	40 ± 0		
1 hr	79 ± 6	80 ± 5	$64 \pm 6*$		
	41 ± 1	40 ± 0	40 ± 0		
3 hr	75 ± 6	80 ± 4	64 ± 4**		
	41 ± 2	40 ± 1	40 ± 0		
6 hr	81 ± 5	76 ± 3	$67 \pm 4*$		
	40 ± 2	40 ± 2	40 ± 0		

^{*}P < 0.01, A/C vs. IMV, SIMV.

^{**}P < 0.05, A/C vs. SIMV.

^{***}P < 0.05, spontaneous breath vs. mechanical b

Minut	te
ventilation	(L/kg)

	IMV	SIMV	A/C
15 min	0.44 ± 0.05	0.42 ± 0.02	0.51 ± 0.06
30 min	0.40 ± 0.03	0.41 ± 0.03	0.42 ± 0.1
45 min	0.41 ± 0.03	0.43 ± 0.04	0.47 ± 0.1
1 hr	0.43 ± 0.03	0.41 ± 0.03	0.46 ± 0.1
2.1	0.40 ± 0.03	0.40 ± 0.03	0.44 ± 0.06
3 hr	0.39 ± 0.05	0.39 ± 0.03	0.42 ± 0.06
6 hr	0.42 ± 0.04	0.38 ± 0.03	0.44 ± 0.05

Tidal volume (mL/kg) spontaneous breath/mechanical breath

_	1		
	IMV	SIMV	A/C
5	0.6 ± 0.8	4.1 ± 0.6***	
5	$.6 \pm 0.7$	7.5 ± 0.5	7.9 ± 0.8
4	0.0 ± 0.5	$4.0 \pm 1.0 ***$	
6	0.4 ± 0.6	6.4 ± 0.4	6.9 ± 0.8
4	0.0 ± 0.6	$4.8 \pm 0.9***$	
6	0.1 ± 0.8	7.6 ± 0.9	7.4 ± 1.2
4	0.1 ± 0.7	$3.9 \pm 0.7***$	
7	0.0 ± 0.8	6.7 ± 0.4	6.7 ± 0.8
4	0.1 ± 0.4	$3.8 \pm 0.4***$	
5	$.9 \pm 0.9$	6.6 ± 0.4	6.8 ± 0.8
3	$.1 \pm 0.5***$	$3.9 \pm 0.6***$	
6	0.3 ± 0.9	6.3 ± 0.5	6.5 ± 0.8
3	.5 ± 0.6***	$3.7 \pm 0.6***$	
6	6.7 ± 0.9	6.5 ± 0.5	7.1 ± 1.0

Fig. 3. Coefficient of variation (CV), %, for tidal volume (V_t) in all groups. **P < 0.05 A/C vs. IMV, SIMV. *P < 0.01, A/C vs. IMV, SIMV. Open columns, IMV; solid columns, SIMV; hatched columns, A/C.

Original Article

Effect of Volume Guarantee Combined with Assist/Control vs Synchronized Intermittent Mandatory Ventilation

Kabir Abubakar, MD Martin Keszler, MD

Journal of Perinatology 2005; 25:638-642

Diseño del estudio

- Estudio prospectivo cross over comparando SIMV+VG con A/C+VG con relación a la presión inspiratoria y la función pulmonar en pacientes prematuros
- 12 RNPT en ventilación convencional fueron aleatorizados a SIMV+VG o A/C+VG por 2 horas y luego fué cambiado el modo de ventilación nuevamente
- Variables:
 - PIP, MAP
 - MV
 - Frecuencia cardiaca, respiratoria, saturación de oxígeno

Table 1 Demographic Ch	nfants	
	Mean (SD)	Range
Gestational age (week)	26 (2.4)	24-33
Birth weight (g)	679 (138)	525-870
Study weight (g)	887 (247)	690-1535
Age at study (days)	27 (17)	7-59

Table 3 Heart Rate, Respiratory Rate and Oxygenation					
		AC+VG	SIMV+VG	p-value	
Heart rate	Mean±SD	148±5	161±7	p<0.0001	
(beats/minute)	Variance	25	46	p<0.0001	
Respiratory rate	Mean ±SD	55.1 ± 6.4	65±8	<i>p</i> <0.0001	
(breaths/minute)	Variance	44.0	70.0	<i>p</i> <0.01	
Oxygen saturation (%)	Mean ±SD	95±2	91±3	p<0.0001	
	Variance	3	12	p<0.0001	

		AC+VG	All SIMV breaths	SIMV+VG machine breaths	SIMV spontaneous breaths	<i>p</i> -value
PIP (cmH ₂ O)	Mean ± SD	15±4.1*	14±4.8	17±2.9*		p<0.001*
	Variance	17.9*	24.4	9.5*		p<0.001*
MAP (cmH ₂ O)	Mean ±SD	8.6±1.8*	8.2±2	9.3±1.6*		p<0.004*
	Variance	3.4	4.0	2.7		$p < 0.001^{\dagger}$
Exhaled tidal volume (ml)	Mean ± SD	5.2±0.5	4.9±2.0	5.1±1.8	3.2 ± 1.8	$p < 0.001^{\dagger}$
	Variance	0.3	4.4	3.4	3.5	p<0.0001
Minute volume (ml)	Mean ± SD	328±50	319±78			NS
	Variance	348	652			p<0.001

^{*}AC+VG compared to SIMV+VG machine breaths only. † Spontaneous unsupported SIMV breaths compared to AC+VG and SIMV+VG (total and machine breaths). ‡ AC+VG compared to SIMV+VG spontaneous or machine supported breaths.

Conclusiones:

- A/C en comparación con SIMV:
 - Facilita el destete ventilatorio
 - ‡ fluctuaciones del volumen corriente
 - J Variación de la presión arterial y de la saturación de oxígeno
 - ‡ Trabajo respiratorio
 - Faltan datos de pronóstico a largo plazo

¡Gracias!